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Buoyancy-driven motion of a deformable drop 
toward a planar wall at low Reynolds number 
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The slow viscous motion of a deformable drop moving normal to a planar wall is 
studied numerically. In particular, a boundary integral technique employing the 
Green’s function appropriate to a no-slip planar wall is used. Beginning with spherical 
drop shapes far from the wall, highly deformed and ‘dimpled ’ drop configurations 
are obtained as the planar wall is approached. The initial stages of dimpling and their 
evolution provide information and insight into the basic assumptions of film- 
drainage theory. 

1. Introduction 
The slow viscous motion of deformable drops is of interest in processes such as 

coalescence, emulsion formation, mixing and separation. In  real systems bounding 
surfaces are always present. However, little is known about the effects of such 
bounding surfaces on drop motions and shapes. Haberman & Sayre (1958) obtained 
approximate solutions for a spherical drop travelling in steady motion along the axis 
of a ,tube. Bart (1968) solved the problem of the slow unsteady settling of a fluid 
sphere toward a flat fluid interface. However, in each of these analyses, the 
assumption of spherical (or near-spherical) shape is a fundamental limitation. 

A multitude of investigators have theoretically considered the effects of a planar 
wall on drops and bubbles when the separation distance between the wall and the 
drop or bubble is very small. In these investigations, the focus has been on the 
dynamics of the thin film between the bounding wall and the drop or bubble, without 
attempting to resolve the dynamics that lead to the thin-film configuration. 
Experimentally, (Hartland 1967, 1969 ; Platinakov 1964) ‘dimpled ’ configurations 
(i.e. relatively thin films that are thinner near the rim than at the centre) have been 
observed for a wide range of parameters. Theoretically, the analyses of this 
configuration have been based upon the lubrication approximation in an attempt to 
model the dynamics of film-drainage. Unfortunately, many of the simplifying 
assumptions have been ad hoc, and largely unmotivated. The most important of 
those assumptions are listed below. 

(i) The film has been assumed sufficiently thin that the lubrication approximation 
is valid (Frankel & Mysels 1962; Hartland 1969; Dimitrov & Ivanov 1978; Lin & 
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Slattery 1982). Specifically, if h is a measure of the film thickness and R is a measure 
of the radial extent of the film then h/R =4 1. This is the key assumption underlying 
film-drainage theory. In particular, it has been implicitly assumed that the 
lubrication approximation includes the necessary physics to predict the onset and 
evolution of dimpling. 

(ii) Viscous effects in the drop have generally been neglected. I n  particular, focus 
has been placed on the two limiting cases of ‘fully mobile’ (zero tangential stress) and 
‘fully immobile ’ interfaces (no-slip applied at the fluid-fluid interface), (Frankel & 
Mysels 1962; Hartland 1969; Dimitrov & Ivanov 1978; Lin & Slattery 1982). 

(iii) Gravitational effects in the film have frequently been neglected (Hartland 
1969; Dimitrov & Ivanov 1978; Lin & Slattery 1982). 

(iv) In  addition to assumption (i), a wide variety of geometrical assumptions have 
been made: 

(a )  The film has been assumed to be nearly a plane parallel to the wall (Dimitrov 
& Ivanov 1978). 

( b )  ‘Dimpled’ configurations have been assumed as initial film shapes. For 
instance, the dimple has been assumed to consist of two parabolas with the 
radius of curvature at the apex varying with time in the central parabola and 
constant in the peripheral parabola (Hartland & Robinson 1977). 

( c )  The drop has been assumed nearly spherical outside of the film region (Lin & 
Slattery 1982; Dimitrov & Ivanov 1978). 

( d )  At the edge of the film, geometrical details of drop shape have been assumed 
nearly invariant with time (Dimitrov & Ivanov 1978; Lin & Slattery 1982). 

The list of thin-film investigations referenced above is by no means complete but 
it is illustrative. It is quite surpfising, after literally dozens of papers based upon the 
film-drainage model that  no previous attempt seems to have been made to  explore 
the legitimacy of the many assumptions that have been used in its development. 

In this paper we present an efficient numerical scheme for determining the 
buoyancy-driven motion of a deformable viscous drop normal to a planar no-slip 
surface. The complete time evolution of drop shape from spherical far from the wall 
to highly deformed near the wall is studied. No limitation on film thickness is made. 
Viscous effects in the drop phase are not neglected. Gravity is not neglected. The only 
geometrical assumptions are that the motion is axisymmetric and the drop is initially 
spherical far from the wall. 

The primary goal of the study is to  explore the film-drainage assumptions listed 
above using a complete numerical scheme. In  addition, this study is intended to 
provide information and insight into the details and mechanism behind dimple 
formation. I n  principle, of course, these goals could also be approached from an  
experimental point of view or, in the final stages of film dynamics, via the 
development of a complete asymptotic theory in which the flow and drop shape in 
the film region are coupled with the flow and shape in the rest of the domain. 
However, in spite of considerable effort, a complete asymptotic description has so far 
eluded us and, in any case, such a theory could not provide a basis to  explore the 
formation of the thin film, only its dynamics after formation. Further, experiments 
with sufficient resolution to  determine velocity and pressure fields within the film or 
even the details of the film geometry are very difficult, if not impossible. Hence, in 
our view, a direct comparison with exact numerical results provides the most logical 
and productive basis for examining the many assumptions of existing film-drainage 
models. Since the current scheme is subject to  numerical errors as well as time 
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limitations, the results obtained pertain strictly to the initial stages of thin film 
formation. Drop shapes obtained with the current numerical scheme may potentially 
be used as starting configurations for thin-film analytic theories. 

The technique that we use is based on the well-known boundary integral method 
that has already been used successfully in a variety of applications. Youngren & 
Acrivos applied the method to calculate the slow viscous flow past a single solid 
particle (1975). Later, Youngren & Acrivos (1976) applied the technique to calculate 
the steady-state deformation of an inviscid drop in an extensional flow, and Rallison 
& Acrivos (1978) considered viscous drops in an extensional flow. Lee & Leal (1982) 
and later Geller, Lee & Leal (1986) used the boundary integral method to calculate 
the motion of a solid sphere normal to a deformable interface. Recently, Chi & Leal 
(1989) considered the motion of a deformable drop normal to a deformable f l u i d h d  
interface, also using the boundary integral method. The current application of the 
method differs from these previous studies in the choice of the so-called fundamental 
solution of the Stokes’ system. Here we employ a Green’s function appropriate for 
systems involving an infinite, planar wall. The concept of employing a Green’s 
function in a boundary integral or singularity formulation has been pursued 
successfully by a variety of researchers. Zick & Homsy (1982) employed the Green’s 
function appropriate to a periodic array of fixed spheres. Pozrikidis (1987) examined 
two-dimensional, creeping, channel flow using the appropriate Green’s function. Tran- 
Cong & Phan-Thien (1989) used Green’s function concepts to treat multiparticle 
systems undergoing Stokes flow. Ascoli, Dandy & Leal (1989) determined the 
hydrodynamic resistance on a solid particle in creeping flow moving in the presence 
of a planar wall using the same Green’s function that will be employed here. 

2. Formulation 
2.1. Equations and boundary conditions 

We consider the slow motion of a deformable drop normal to a no-slip, infinite, 
planar surface (figure l a ) .  Fluid 1, which comprises the drop, and fluid 2, in which 
the drop is suspended are both assumed to be Newtonian with constant density. In 
addition, the fluids are assumed to be immiscible with an interface characterized by 
a constant surface tension. All motions and deformations are assumed axisymmetric 
about the z-axis, which passes through the drop centre and is normal to the planar 
wall. Gravity is assumed to act along the z-axis, toward the wall if fluid 1 is more 
dense than fluid 2, or away from the wall if fluid 1 is less dense than fluid 2. The 
analysis presented is based upon the creeping motion approximation in which the 
intertial terms in the equations of motion are neglected entirely. The corresponding 
small Reynolds numbers of the system are 

Ua 
Re, = - 4 1 (i = 1,2).  

V i  

The characteristic length, a ,  is the radius of a sphere of equal volume and vl, v 2  are 
the respective kinematic viscosities of fluid 1 and fluid 2. The characteristic velocity, 
U ,  is the terminal velocity of an equal volume spherical drop in the absence of a wall 
and is given by the Hadamard (1911) and Rybczynski (1911) result 
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(a) Schematic of the problem. ( b )  An illustration of the 
Zcentre, 'axis, z m i n ,  and Prnin. 

quantities 

where h = ,u1/y2 is the ratio of dynamic viscosities while p1 and p, are the respective 
fluid densities. The governing Stokes equations are then : 

0 = -vpi+v2ui, 0 = v.u, (i = 1,2). (1) 

Here, velocities are made dimensionless with U and lengths with a. Pressures and 
stresses are made dimensionless with pi U/a.  The boundary conditions are 

u,+O as ((x(I+ 00, (2) 

u, = 0 forz = 0, (3) 
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def 
and at the drop interface, x E S ,  : 

u, = u, = UI, (4) 

The vector n is the outer normal to the drop surface. The pressures p ,  and p ,  are 
modified pressures t which represent the pressure contribution in the fluid due solely 
to motion. Gravity enters the problem through ( 5 )  via the term in curly brackets. 
Here. 

ca  = 11.2 UlY 
is the capillary number. 

Given a drop configuration at dimensionless time t ,  (time made dimensionless with 
respect to a lU)  equations (1)-(5) determine the instantaneous velocity field. The 
drop surface, S,, is assumed to deform in accord with the instantaneous interface 
velocity field, thus, determining a new drop configuration. In this manner, the time 
evolution of the drop is determined. The kinematic condition used to deform the drop 
surface is 

(6) 
dxS - n ( x J  (n(xs).u'(xs)). dt 

In other words, the drop surface is deformed pointwise along the normal with the 
normal projection of the surface velocity. 

Ascoli, Dandy & Leal (1989) presented the boundary integral formulation 
appropriate for the case where an infinite, no-slip, planar wall is present. There, the 
formulation was applied to determine the hydrodynamic resistances on solid 
particles in creeping flow near a no-slip planar wall. The extension to the two-fluid 
case is straightforward; thus, we present only the results. Details of the derivation 
can be found in Ascoli (1988). 

System (1) and the corresponding boundary conditions when recast in boundary 
integral form and evaluated at a point x,ES~ yield: 

def 

where p) = n * T(i ) .  
The wall Green's function kernels d ( x ,  &), d ( x ,  E )  and D(x,  6) and discussed by 

Blake (1971) and stem from the w o k o f  Oseen (1927) and Odqvist (1930). They are 
given by : 

t p ,  = P,+pgza2/p,Uwhere P, is absolute pressure and the sign is determined by the direction in 
which gravity acts. 



292 

and 

E .  P .  Ascoli, D .  S .  Dandy and L. G .  Leal 

where r = ( k l - x 1 ; k 2 - X 2 , 5 3 - X 3 ) T ,  R = ( 5 1 - X 1 , 5 e - x 2 , 5 3 + X 3 ) T , r  = [ (El -%)'+  

(52-2 , )2+(53-~3)2]3 ,  R = [(El-xl)2+((52-x,)2+(63-x3)2]~, and R3 = t3+z3. The 
quantity A,  has value + 1 for j = 1,  2 and - 1 for j = 3. Here 4 , g j  and f : k  is the 
classical 'fundamental solution ' to Stokes system employed by previous researchers. 
Physically, 4 is the ith component of the velocity at  5 due to a unit force, or Stokeslet, 
applied at  the point x in the direction e,. The quantity -$ is the corresponding 
pressure. The Green's function (9) can be viewed as the fundamental solution to 
Stokes equations plus additional terms to account for the presence of the planar wall. 

Given a drop shape, (7) and (8) when numerically discretized allow computation 
offi) and u'. Velocity and pressure fields interior and exterior to the drop may then 
be calculated using : 

( - l)"(Ui(X))j = I,, (n Ti)  (5) * d(x, 5) - n * a x ,  E )  * u'(5)) ds,, 

pi (x) -p i  = -JsIri) (5). ~ ( x ,  ~ ) - ~ . @ ( X , ~ ) . U I ( E ) ) ~ X C  

( X E Q * , i  = 1,2) (10) 

The terms pi  are constants of integration with p ,  being the pressure as z+ 00. The 
kernels Y and @ are given by 

R5 

There are several ways in which the drop surface may be represented. One 
possibility is to define the surface as (p(z),  z )  for B E  [0,2x), where p = (x2 + y2)i  and 0 
are cylindrical coordinates. However, this representation implicitly limits the types 
of surfaces which can be considered to those for which p is a single-valued function 
of z. Alternately, a spherical coordinate system could be employed, with psphere = 
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(z2 + y2 + z2)$ and polar angle 4 measured from the z-axis, to give a representation 
(psphere($), $) for OE [0,27r) and $ E  [0, n). Again this representation is limited to those 
surfaces which yield single-valued functions psphere (4). An equally simple, but more 
general representation which avoids this potential problem is to parametrically 
define the surface as (p(s),z(s))  for t?E[O,2n), where s is a parametric independent 
variable lying in the interval [so, sf]. This is the approach taken here. In  particular 
s is chosen to be normalized arclength. 

In terms of the functions p(s) and x ( 8 )  which define the surface, the components of 
the unit normal to the surface are 

i P n =  n, = - 
P (P"+i2)+' ( P 2  + 22);' 

and the curvature is 

l +  

i 
V - n  = 

p ( p " i 2 ) y  (p"P);'  

where dots indicate differentiation with respect to the variable s. 
Due to axisymmetry, (7) and (8) can be further simplified. The dependence of the 

integrands on 0 is known and integration with respect to B can be performed. 
Although the resulting analytic integration yields quite complex expressions, the net 
result is a reduction of the integration domain from two dimensions to one. The 
results are 

ds" = dsp(P2 + i');. 
Expressions for the matrices P and Q may be found in Ascoli (1988). 

This system provides a relationship between the velocity of the fluid l/fluid 2 
interface, the interfacial stress and the interfacial curvature. Given the set of surface 
variables p,z,P,i ,p, and 5' at time t ,  this system allows calculation of the 
instantaneous interfacial velocity and stress. Once the interfacial velocity is 
determined, the interface is deformed in accordance with the kinematic condition (6). 
At any instant, once the interfacial velocities and stresses are known, velocities and 
pressures in the interior of the fluid domain may be calculated from the &integrated 
forms of (10). 

2.2. Implementation 
System (15, 16) may be discretized and numerically solved. The approach taken here 
employs the method of Krylov-Bogoliubov (Kantorovich & Krylov 1963). 
Specifically, the interface arc (p(s), % ( a ) ) ,  SE [so, sf] is divided into Nelements. This is 
accomplished by dividing the interval [so, sf] into subintervals, 4, with centres 
s,(i = 1 , .  . .,iV). Each parametric value, s,, corresponds to a point on the arc x j  = (p(s,), 
z(si)) and each As, corresponds to a segment or element of the'arc. The elements are 
assumed to be sufficiently small so that the local normal tractions $),A1) and 
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velocities u$u: may be assumed constant within each element. The resulting 
discretized system is : 

Given the details of the initial shape and curvature, each coefficient 

S,, P(x i ,  5) di ,  JA,  xi, 5) d i  

and inhomogeneous term 

can be easily evaluated by standard numerical integration schemes. Here Gaussian 
quadrature was used. For j = i and s = si then c(s) = x i ,  and the functions P and Q 
become unbounded. In this case, approximate analytic treatment of the singular 
integrand is performed to include accurately the singular contribution (Ascoli 1988). 

Equation (18) is then a 2iVx 2N linear system in the unknown velocities which is 
easily solved by standard methods. If desired, the unknown surface forces may then 
be determined by solving (17) .  Once a shape and velocity distribution a t  time t is 
known, an explicit discretization of (6) is used to determine a new shape and 
subsequent velocity distribution. This determines a new set of surface locations 
(p (s j ) ,z (s j ) )  for j  = 1, ..., N a t  time t + A t .  Cubic splines are used to determinep(s),P(s), 
p(s) ,  z ( s ) ,  i ( s ) ,  5(s) for S E  [so, sf]. The t + At velocities are then Calculated using these 
shape details and the process is repeated, marching forward in time. 

3. Numerical results 
3.1. Preliminary testing 

As an initial test of the wall Green's function approach, drag calculations were 
performed on solid ellipsoids moving axisymmetrically toward the wall. Agreement 
with existing theory was excellent. For further details the reader is referred to Ascoli 
et al. (1989). Calculations were performed on a spherical drop located far (1000 radii) 
from the wall. Comparison with the results of Hadamard (1911) and Rybczynski 
(1911) was excellent (Ascoli 1988). 

The calculated drag, found by integrating the local surface forces (ff,jz), 
theoretically should equal the constant applied buoyant force. Thus, the error in this 
computed value may be used as a check of the accuracy of the technique for all ranges 
of drop to wall distance. Using calculated drag error as a guide, it was detcrrnined 
that 32 surface elements were adequate for the range of parameters considered. 

In the course of the computations, errors in drop volume, though extremely small 
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a t  each given timelshape calculation, were found to accumulate. Typically a 
calculation using 32 elements beginning with a spherical drop shape 15 radii away 
and terminating with a highly deformed drop within one undeformed radius of the 
wall was found to  have a total accumulated error in volume of the order of 5 %. With 
a timestep of 0.005 and a run time of approximately 20 dimensionless time units this 
corresponds to roughly 0.00125 % error in volume per iteration. Although slightly 
improved accuracy in volume was obtained by using 40 and 48 elements, the 
additional computational time did not warrant the use of more than 32 elements. 
Instead, for all the results presented below, a periodic renormalization of the length 
scaling was performed during the computations to  maintain a constant drop volume. 

A test was performed to  determine the distance from the wall a t  which the 
assumption of a spherical starting shape is reasonable. A spherical drop was released 
with centre of mass a t  an initial distance of 25 undeformed radii from the wall (i.e. 
Zcentre = 25) and the calculations were continued until Zcentre = 15. The centre of 
mass velocity, Ticentre, differed from the normalized value of one by as much as 6.4% 
for Ca = 3, h = 0.3. However, the maximum deviation in radius from one undeformed 
radii 

for this case was less than 2%. For Ca = 1 and Ca = 0.3, the maximum deviation 
from a constant radius was less than 0.85 and 0.25%, respectively, for the h values 
considered. These results indicate that a starting position of Zcentre = 15 with a 
spherical initial shape is an excellent assumption for Ca = 0.3 and 1,  and a reasonable 
assumption .for Ca = 3. 

Hartland (1969) performed a series of experiments involving drops of golden syrup 
containing potassium iodide falling under the influence of gravity through sextol 
phthalate towards a planar wall. Although the intent of his experiments was to study 
the later stages of dimple formation when the golden syrup drops are extremely close 
to the wall, his photographic results for the early stages of dimple formation provide 
experimental details of the gross shape of the entire drop which may be compared 
with the current numerics. Hartland's physical parameters for the high viscosity 
golden syrup drop (p, = 1.580 g/cm3, p, = 1.069 g/cm3, pl = 175 P, pz = 137 P, y = 
23.6 dynelcm, with drop volume of 0.25 cm3) give U = 0.234 cm/s, Ca = 1.358, h = 
1.478, and Re, = 8.25 x Numerical results are shown in figure 
2 for the case of Ca = 1, h = 1 with Zaxis = 0.155. This is the smallest value of Zaxis 
obtained numerically for these parameters. Hartland's photograph corresponds to 
Zaxis between 0.153 and 0.128. The agreement in the shape is exceptional. 

max([(zi-Zcentre)* +pi1-1)' 

Re, = 7.13 x 

3.2. Results 
The calculations presented here were carried out using thirty-two elements with a 
timestep of 0.005. Each run was terminated when the calculated drag differed from 
the theoretical value by more than 2%. Results are reported for h of 3 , l  and 0.3, 
with Ca equal to 3 , l  and 0.3 for each A. For all calculations the initial shape was 
taken to  be spherical, with the sphere centre at 15 radii from the wall. 

The calculated drop shapes are shown in figure 3 for all nine combinations of h and 
Ca. The elapsed time between each shape shown is 1 dimensionless time unit (i.e. the 
time increment required for the undeformed drop in an unbounded fluid to translate 
a distance equal to its own radius). 

Dimpling was observed for all values of Ca and h considered. Shape evolution 
naturally divides into two regimes: evolution prior to the point of dimpling and 
evolution after a dimple has formed. The transition configurations, i.e. the 



296 E .  P .  Ascoli, D. S. Dandy and L. G. Leal 

FIGURE 3 (a-c). For caption see facing page. 

numerically determined film configurations a t  the timestep immediately prior to the 
formation of a dimple, are shown in figure 4. These transition configurations all 
display a small, nearly flat region a t  the wall side of the drop near p = 0. In each case, 
the dimple first forms in this flat region, a t  a relatively small radial distance from the 
z-axis. The apex of the dimple then moves radially outward. 

The pertinent questions a t  this point are (i) what role do Ca and A play in 
determining the configurations shown in figure 4, (ii) why does a dimple form once 
these configurations are established and (iii) what effect do Ca and h have once a 
dimple has formed ‘2 

Increasing Ca results in an overall increase in deformability of the drop throughout 
its entire range of motion. This is obvious from figure 3. In addition, increasing 
capillary number results in ‘onset ’ of dimpling farther from the wall. This statement 
may be made more precise by defining Zcentre, the z-axis location of the drop centre 
of mass and Zaxis, the distance along the z-axis from the plane to the nearest axis 
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FIGURE 3. Evolution of drop shape. The dimensionless time between shape curves is 1. (a)  Cu = 
0.3, A = 0.3; (b)  Cu = 1, A = 0.3; (c) Cu = 3, A = 0.3; (d )  Cu = 0.3, A = 1 ;  (e) Cu = 1, A = 1; (f) 
Ca = 3, A = 1; (9) Ca = 0.3, A = 3; (h) Ca = 1 ,  A = 3; (i) Cu = 3, A = 3. 

point of the drop (figure lb). At the instant when dimpling is first numerically 
observed, Z,,,, and Zcentre are largest for Ca = 3. The Zcentre and Zaxis values when 
dimpling is first observed both decrease with decreasing Ca. This is clearly seen in 
figure 4 for the configuration immediately prior to dimpling. 
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A = 0.3 A = 1  A = 3  

A = 0.3 A = l  A = 3  

A = 0.3 A = l  A = 3  

FIGURE 4. Drop configurations a t  the timestep immediately prior to dimpling. 

0.10 0.14 0.18 0.22 0.26 0.30 
Z , X h  

FIGURE 5 .  Z,, V J ~ .  Z,,, for h fixed a t  1 and Cu varying. Solid line corresponds to Z,, = Zaxls (i.e. 
no dimpling). . . . . . . , Cu = 0.3; ----, Cu = 1 .  > >  --- Cu = 3. 

The depth of the dimpled region, and the location of the ‘outer edge’ of the dimple 
are best discussed in terms of Zmin and pmin (figure l b ) .  Zmin denotes the minimum 
distance along the z-direction between the drop and the plane wall, while pmin 
denotes the radial distance in cylindrical coordinates to the position on the drop at  
which Zmin occurs. Once a dimpled configuration has formed, for a given Zaxis, the 
depth of the dimple Zaxis -Zmin increases with increasing Ca. In  particular, for Ca = 
0.3 dimpling is barely noticeable a t  the point where the calculation was terminated. 
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FIGURE 6. Pmin 

z,x,s 

vs. Z,,,, for h fixed at 1 and Ca varying. ' . . . . . , Ca = 0.3; ---- 
Ca = 3. 

zcentre 

FIGURE 7. V,,,,,, vs. Z,,,,,, for h fixed at  1 and Ca varying. . . . . 1 . , Ca = 0.3; ----, Ca = 1. 3 ,  --- Ca 
= 3. Solid line corresponds to the results of Bart (1968) for a spherical drop (Ca = 03 limit). 

However, as Cu increased to 1 and 3, the depth and width of the dimple region 
increased dramatically. This effect is illustrated in figures 5 and 6 for the case 
A =  1. 

Increasing Cu also produces an increase in the deviation from sphericity a t  the side 
of the drop farthest from the wall. In  fact, for Cu = 3.0, flattening and eventual 
indentation of the side of the drop farthest from the wall was observed. 
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The effect of Cu on the normalized centre of mms velocity is much less than might 
be anticipated from the large effect that Ca has on the drop shape. V,,,,,, plotted 
versus Zcentre is shown in figure 7 for the case h = 1. Deviation from the non- 
deforming spherical results (solid line) is small. Far from the wall, these deviations 
are due to blunting of the wall side of the drop (and subsequent shift of the drop 
centre of mass away from the wall). Near the wall, deformation allows a mechanism 
of motion which the spherical drop is not allowed. 

Conversely, what is the effect of varying h for fixed Ca ? Calculated shape details 
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FIQURE 
h = 3. 
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10. V,,,,,, vs. ZCentre for Ca fixed at 1 and A varying. . . . . . *  , A = 0.3; ----, A = 
Solid line corresponds to the results of Brenner (1961) for a solid sphere ( A  = 00 

1 .  ___  
limit). 

I ,  

are remarkably insensitive to A. For Ca fixed at  0.3 and h varying, figures 3a, 3d  and 
3g are nearly indistinguishable as are the corresponding configurations shown in 
figure 4. For Cu fixed at 3 and 1, very slight configurational differences are observed. 
In particular, figure 4 demonstrates that increasing h corresponds to slightly smaller 
values of ZaXis and Zcentre immediately prior to dimpling. Even after dimpling has 
occurred, the effect of varying A in the Ca = 1 and 3 cases is relatively small. The 
general trends in the dimpled configuration are shown in figures 8 and 9. The pmin 
value where the dimple is first formed is insensitive to A (figure 9, where the dark 
circle denotes this value). The shapes of the curves in figures 8 and 9 are remarkably 
similar for different A. In short, the ‘dynamics ’ are roughly the same for each A. Once 
again, the value of h determines the starting Z,,,, values where the curves begin. 

Variation in h does have a significant effect on the normalized centre of mass 
velocity. This is demonstrated in figure 10. At a given Zcentre location, drops with 
higher viscosity relative to the suspending fluid show a larger wall interaction 
(corresponding to lower Kcenwe). This effect diminishes significantly in the latest 
stages of deformation when the drop is closest to the wall. Thus, the major effect of 
h is to set the relative rate at which the drop evolves, up to the point of dimpling. 

Thus far, the gross geometrical details of deformation and the relative rate at  
which this deformation takes place have been correlated with Ca and A. A careful 
examination of the velocity and modified pressure fields provides additional insight 
into the.dynamics of dimple formation. 

Equations (10) allow computation of velocity and pressure fields in the two fluid 
domains. Figure 11 (a)  shows the velocity field obtained for Ca = 1, h = 1 in a 
dimpled configuration. Here the velocity is calculated relative to a fixed wall. Figure 
11 (a) shows the analogous velocity field, with velocity measured relative to the 
centre of mass of the drop. Figures 12 and 13(a, 15) show the velocity fields for the 
dimpled configurations with parameters Ca = 0.3, h = 1 and Ca = 3, h = 1, 
respectively. These figures indicate that, once a dimple is formed, the largest relative 
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FIUURE 11 (a) Velocity field for Cu = 1, A = 1, Zcentre = 0.615. The horizontal arrow below the wall 
corresponds in length to &U and thus indicates scale. Velocities are measured relative to an origin 
fixed on the wall. ( b )  As (a) ,  except velocities are measured relative to an origin fixed at the centre 
of mass of the drop. 

motion occurs a t  the outer edge of the dimple. In  particular, the downward motion 
of the film a t  p = 0 is small in comparison to the downward motion of the outer edge 
of the dimpled region. I n  short, the dimples increase in depth (Zaxis-Zmin) with time. 

It is instructive to focus on the velocity fields in the film region immediately prior 
to the dimple formation. Figures 14 and 15 show the radial and z-components of the 
velocity in the film for Cu = 1 and A = 1. At the next numerical timestep a dimple 
has formed with its apex at the radial position marked by the vertical line a t  the wall. 
From these plots it is easily seen how a dimple will form in terms of velocity field 
variation. Near p = 0 the face of the drop nearest the wall is approximately flat. The 
downward component of velocity increases as one moves radially outward. Although 
this increase in downward velocity is small, near p = 0 the surface is nearly flat and 
thus only a slight increase in downward velocity is sufficient to form the dimple. 
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- 
FIGURE 12. Velocity field for Cu = 0.3, A = 1, Z,,,, = 0.787. The horizontal arrow below the wall 

corresponds in length to &U and thus indicates scale. 

I ~................,.,, . .  

................ 

- 
FIUURE 13. Velocity field for Ca = 3, A = 1, Z,,,,,, = 0.477. (a) The entire film. The horizontal arrow 
below the wall corresponds in length to &U and thus indicates scale. (b) The central region of the 
film. The horizontal arrow below the wall corresponds in length to &lJ and thus indicates scale. 

+ 
FIQURE 14. The p-component of velocity for Cu = 1, A = 1, ZEentre = 0.757. The next numerical 
timestep corresponds to the first formation of a dimple. The vertical line below the wall corresponds 
to the radial location at which the dimple initially forms. The horizontal arrow below the wall 
corresponds in length to #J and thus indicates scale. 

Stokes equations are physically a balance between the forces due tto modified 
pressure and the forces due to viscous stresses. Viscous stresses correspond to 
velocity variation. We have examined the velocity fields. The next step is to consider 
the modified pressure fields. 

Film-drainage theory employing the lubrication approximation emphasizes the 
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+ 
FIGURE 15. The z-component of velocity for Cu = 1, h = 1, Zeentre = 0.757. The next numerical 
timestep corresponds to the first formation of a dimple. The vertical line below the wall corresponds 
to the radial location at which the dimple initially forms. The horizontal arrow below the wall 
corresponds in length to and thus indicates scale. 
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FIGURE 16. Pressure for Cu = 1, h = 1, and Zcentre = 0.615 plotted against .radial distance. . . . . . I ,  

z = 0.01; ----, z = 0.06; ---, z = 0.12. Inset: The corresponding shape and z-values. 
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importance of variation in pressure with radial position. Variation of pressure with 
z is neglected. The velocities calculated a t  the surface of the film are directly related 
to the assumed radial variation in pressure. As a consequence, the evolution of the 
film shape is critically dependent on the assumed variation in pressure. What do the 
numerically calculated pressure fields look like after a dimple has formed ? Figures 
16-18 show calculated modified pressure fields corresponding to the configurations of 
figures 11-13. The most obvious variation in pressure occurs at the outer edge of the 
film region. Here p ,  rapidly decreases radially outward. Equivalently, i3pJi3p is 
negative and large in absolute magnitude. In each case, p ,  in the film region decreases 
with z at a fixed p location. In  other words, i3p2/i3z is negative in the film region. For 
the significantly dimpled case of Ca = 3, i3p2/ap is positive from p = 0 outward to the 
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P 

z = 0.01 ; ----, z = 0.05; ---, z = 0.087. Inset : The corresponding shape and z-values. 
FIGURE 17. Pressure for Ca = 0.3, h = 1, and Z,,,, = 0.787 plotted against radial distance. . . . . .. 

P 

FIGURE 18. Pressure for Ca = 3, h = 1, and Zcentre = 0.477 plotted against radial distance. . . . * * a ,  

z = 0.01; ----, z = 0.065; ---, z = 0.11. Inset: The corresponding shape and z-values. 

edge of the dimple and negative beyond the dimple. On the other hand, for the 
Ca = 1 and Ca = 0.3 cases, where the dimple is in its infancy compared to the Ca = 3 
case, ap2/ap is negative throughout the film region. For Ca = 3, apg/8p and ap2/az are 
extremely small in the nearly stagnant central flow region. For the other cases ap,/ap 
and apP,/az are roughly of the same order of magnitude near p = 0. ap2/ap grows 
rapidly more negative near the edge of the film region, while here 8p2/az is small in 
magnitude by comparison. 
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FIQURE 19. Pressure for Ca = 1 ,  A = 1 ,  and ZCentre = 0.757 plotted against radial distance. The next 
numerical timestep corresponds to the first formation of a dimple at p = 0.125. * + . . . . , 2 = 0.01; 
____, z = o 1 . - - -  . , , z = 0.17. Inset: The corresponding shape and z-values. 

What do the pressure fields look like, immediately prior to dimple formation? 
Figure 19 shows the modified pressure for the Ca = 1,  h = 1 case immediately prior 
to dimple formation. The largest pressure variation is at the edge of the drop, where 
pressure rapidly decreases radially outward. In contrast, for this configuration, the 
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dimple first forms at  p = 0.125 where the radial pressure variation is small relative to 
pressure variation with z. This is at odds with thin-film lubrication assumptions. 

How does the pressure field vary as the drop approaches the wall ? In particular, 
how does i3p2/az vary near the centre of the drop, as the drop approaches the wall ? 
The evolution of pressure fields as the Ca = 1, A = 1 drop approaches the wall is 
shown in figures 2&22. For each plot, a radial distance is fixed and pressure is 
calculated for z-values beginning at  the wall and up to the drop surface. Each curve 
in the figures then corresponds to a different Zcentre location. These figures illustrate 
the fact that for small p and large Zcentre, i3p2/az is positive near the drop surface. As 
Zcentre decreases (i.e. the drop moves toward the wall) ap2/az becomes negative over 
the entire film height. As the drop moves closer to the wall apz/az eventually 
decreases in magnitude. 

Summarizing, pressure variation with z may be negligible in the latest stages of 
dimple formation. In contrast, when the dimple first forms, pressure variation with 
z is not small relative to pressure variation with p. 

The significance of a negative ap2/az,  at the onset of dimpling may be seen from 
an elementary analysis of Stokes equations. 

Writing system (1) in pressure-vorticity form (see Happel & Brenner 1965 $3.1;  
below velocities and pressures refer to fluid 2) : 
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.o 

Integrating these equations from 0 to p and from zo to z gives 

where finiteness at p = 0 has been used. Differentiating (20) with respect to z and 
applying the differential operator (l/p) (a/ap)p( ) to (19), and using the harmonicity 
of pressure gives 

i a  aP 
Pap Z.=L0 
--(PF(P)) = -1 

Solving (once again assuming finiteness at  p = 0) yields 

This equation applies in any rectangle [O,p] x [z,, z ]  contained in fluid 2. In 
particular, since the film depicted in figures 14 and 15 is nearly flat, apply this 
equation on a disk, z = Z,,PE [O,p,] parallel to the film where z, lies just below the 
upper surface of the film and pr is the radial location where dimpling first occurs: 

Figure 14 indicates that (au,/az) I z-eo,p-p, will be nearly zero or small and positive. 
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Dimpling at  pf can only occur in this configuration if (a( - u , ) / a p )  (L-Zo,p=pf is positive. 
Assuming that zo is sufficiently close to the film surface that continuity of velocity 
will ensure that what happens at (pf, 2,) is representative of what happens at the film 
surface, (pf, zfilm), then it is necessary that (ap/az) I p - z o  be negative in a region near the 
drop surface. This analysis demonstrates that the Stokes equations in fluid 2 when 
applied to a flat-film configuration only allow dimple formation if aplaz is negative 
near the drop surface. Let us suppose, in contrast, that lubrication theory is applied 
(e.g. Hartland 1969; Lin t Slattery 1982, where gravity is neglected or Ascoli 1988, 
where Hartland’s analysis is extended to include gravity) when the film is locally flat. 
The result, for a locally flat configuration is that no local thinning of the interface 
0ccurs.p This is a direct consequence of neglect of pressure variation with x in the 
lubrication theory ! 

3.3. Discussion 
The assumptions relevant to film-drainage theory listed in the introduction may now 
be assessed. def 

(i) Films have been assumed thin in the sense that E = h/R < 1. This assumption 
has been used to neglect various terms in the equations of motion in the context of 
‘lubrication ’ or boundary-layer approximations. It is anticipated that the simpli- 
fying approximations made in these theories are increasingly accurate as E + 0. 
Taking h to be Zaxis a t  the instant the dimple forms and R to be the undeformed 
radius of the drop (for the numerical cases shown, this choice of R provides a 
reasonable measure of the radial extent of the film region), at  the onset of dimpling, 
the current numerics predict E in the range 0.1-0.3. These values of e are by no means 
vanishingly small which suggests that the lubrication approximations may not be 
accurate at the onset of dimple formation. 

(ii) Jones and Wilson (1978) applied thin-film arguments to the related problem of 
a drop approaching a deformable interface. They considered the film to be composed 
of a dimple region and a central film region. If ut denotes tangential velocity, the 
tangential stress in the central film is of the order of p2u,/h while the stress in the 
drop is of the order ,u1ut/R. Viscosity ratio, A,  is assumed to be O(1) while E = h/R 
is assumed small. Continuity of velocities indicates ut in the central film and in the 
drop are of the same order. The conclusion Jones & Wilson reach is that the 
tangential stresses cannot match to leading order and thus &,/an = 0. The viscous 
contribution within the drop to the tangential stress does not come into play. In the 
dimple region this analysis breaks down. Here the appropriate length scaling in the 
drop is h (the order of size of the dimple) and the tangential stress in the drop is of 
the same order as the film tangential stress. Thus Jones & Wilson conclude that 
viscous effects in the drop must be considered in the dimple region. Immediately 
prior to dimple formation, their argument indicates au,/az = 0 throughout the film 
region. Figure 14 indicates that aup/az is small at  the interface in the central region 
of the film. However, this may be deceptive since in the initial stages of dimple 
formation (21) indicates that an accurate estimate for au,/az at the interface may be 
crucial. Thus, it is difficult to assess the error of this approximation clearly. 

(iii) The dimensional equivalent of (5), when resealed, provides the necessary 
information to determine when for a ‘thin’ film gravity effects may be neglected 

t In these lubrication analyses, if g(p, t )  represents the vertical displacement of the film from the 
wall at time t ,  then ag(p, t ) /a t  is found to depend on aglap and higher p derivatives. Thus aglat = 
0 locally if the interface is locally flat. 
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relative to surface tension effects. Scaling p with R ,  z with h and curvature with s /R 
leads to the parameter (Ascoli 1988) 

M = 3 e )  (m)Ca. 1 + % A  

Roughly speaking, M is the ratio of gravitational effects to surface tension effects. 
M < 1 indicates gravity is negligible relative to surface tension. Only in the limit 
Ca Q 1 will M be small. None of the numerical cases considered here approach this 
limit. 

(iv) Drop deformation increases with increasing Ca. Thus the assumption of 
spherical drop shape outside the film region is limited to Ca e 1. Similarly, outside 
of the dimpled region, invariance of drop shape is limited to the small Ca regime. 

Dimple evolution is observed to  occur in several stages. Initially a configuration 
is established in which the interface is nearly flat a t  the central region of the film, 
and then gradually slopes upward a t  the edge of the film. In  this configuration, i3pJaz 
is observed to be negative near p = 0. A negative value of ap,/az has been shown to 
be crucial to the observed increase in downward velocity as one moves radially 
outward across the locally flat film. It is this increase in downward velocity that 
forms the initial dimple. Lubrication theory neglects the critical variation of pressure 
with z. As a consequence, lubrication theory predicts no local deformation of a locally 
flat interface. 

In the later stages of dimple growth (here observed for Ca = 3), velocity a t  the 
central region of the film is dramatically smaller than near the edge of the dimple. 
Here fluid is ‘ trapped ’ by the dimple and corresponding pressure fields indicate that 
pressure increases radially outward to the edge of the dimple, and then decreases to  
the stagnant fluid value. The quantity, i3p2/az, is seen to decrease in magnitude in the 
later stages of dimple evolution. It is only for this last stage of dimple evolution that 
the lubrication assumption of negligible pressure variation with z may be valid. 

This work was supported, in part, by a grant from the Fluid Mechanics program 
of the National Science Foundation. 
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